
Project 1: Orientation Tracking
Prathamesh Saraf (A59015739)

Department of Electrical and Computer Engineering
University of California, San Diego

psaraf@ucsd.edu

Abstract—This project aims to track the orientation of a
camera sensor mounted on a robot and generate a panoramic
image of its surroundings. The project employs the use of IMU
sensor data to calculate quaternions through a motion model and
an observation model. A cost function incorporating errors from
both models is optimized through gradient descent to produce
optimized quaternion trajectories. The optimized quaternion
trajectory is then transformed into a rotation matrix and used to
process the camera data, resulting in the final panoramic image.

Index Terms—Inertial Measurement Unit, quaternions, gradi-
ent descent algorithm, orientation tracking

I. INTRODUCTION

The goal of this project is to track the orientation of a
camera sensor mounted on a robot and use the collected
camera data to construct a panoramic view of its surroundings.
To achieve this, the project employs a number of technical
methods and processes.

Firstly, the IMU (Inertial Measurement Unit) sensor data,
which includes the values from the gyroscope and accelerom-
eter, is used to calculate quaternions. These quaternions are
determined through a motion model that incorporates the
angular velocity and time step information. With the calculated
quaternions, an observation model is established to obtain the
acceleration values.

We then build a cost function that incorporates the errors
from both the motion model and the observation model. This
cost function is minimized through the use of a gradient
descent algorithm. The output of the optimization is a set
of optimized quaternion trajectories that closely match the
reference data from the VICON system.

In the second part of the project, the optimized quaternion
trajectory is transformed into a rotation matrix. This matrix is
used to perform various transformations and rotations on the
camera data, which is then unwrapped to produce the final
panoramic image.

In summary, this project combines various fields such as
robotics, computer vision, and machine learning to track the
orientation of a camera sensor, process the collected data, and
generate a panoramic view of the environment.

II. PROBLEM FORMULATION

We construct the motion model, which represents the trajec-
tory of all the quaternions. The starting quaternion is assumed
to be [1, 0, 0, 0], and subsequent quaternions are calculated
using Equation 1.

qt+1 = f (qt, τtωt) := qt ◦ exp ([0, τtωt/2]) (1)

We leverage the quaternions obtained from Equation 1 to
compute our observation model. The observation model en-
compasses all of the acceleration values that correspond to
each quaternion, which are calculated using Equation 2.

at = h (qt) := q−1
t ◦ [0, 0, 0,−g] ◦ qt (2)

To optimize the quaternion trajectory, we first calculate the
cost function using the motion model error and the observa-
tion model error. The motion model error is determined by
comparing the previous quaternions with the newly generated
quaternions resulting from the application of gradient descent.
Meanwhile, the observation model error is calculated by
comparing the IMU accelerometer data with the acceleration
output produced by the observation model. The ultimate goal
is to minimize both errors in order to obtain the optimal
quaternion trajectory after the gradient descent algorithm has
been executed. the cost function is given in Equation 3 below:

c(q1:T ) :=
1
2

∑T−1
t=0

∥∥2 log (q−1
t+1 ◦ f (qt, τt, ωt)

)∥∥2
2

+
1

2

T∑
t=1

∥at − h (qt)∥22 (3)

The cost function is then optimized over the constraint that all
quaternions have unit norms as shown in equation 4.

minq1:T
c (q1:T )

s.t. ∥qt∥2 = 1, ∀t ∈ {1, 2, . . . T} (4)

Gradient Descent is an optimization algorithm used in
machine learning to minimize a cost function by iteratively
adjusting the parameters of a model. The cost function repre-
sents the error or difference between the predicted values of
the model and the actual values. The goal of the algorithm
is to find the set of model parameters that minimize this cost
function.

In Gradient Descent, the optimization process is performed
by computing the gradient of the cost function with respect
to the model parameters. The gradient represents the slope of
the cost function and points in the direction of the maximum
increase in the cost function. By taking small steps in the
opposite direction of the gradient, the algorithm adjusts the
parameters in such a way that the cost function is gradually
minimized.

qt+1 = q− α · ∇c(q) (5)



III. TECHNICAL APPROACH

A. Calibration

The IMU data must undergo calibration to eliminate bias
from the gyroscope and accelerometer readings. This is
achieved by determining the average acceleration and angular
velocity values from the IMU when the robot is stationary and
not rotating. The length of this stationary period is determined
using the VICON data, as the rotation matrix from the VICON
readings will be an identity matrix during this time. To find the
bias, we calculate the average acceleration and omega values
during the stationary period as determined by the VICON data
and subtract this bias value from the IMU readings. The result
is a corrected and calibrated set of acceleration and angular
velocity values. Here, I was getting the acceleration plot to be
180 degrees out of phase with the VICON data. Even after
debugging with the help of TA, I wasn’t able to figure out
the problem. The acceleration plot was matching for z values
but not for x and y values. Also, I was getting suspiciously
high acceleration values for x and y (around 65000). Hence,
I did not change the sign of the x and y acceleration values
as mentioned in the doc. After this, the problem was solved
and the acceleration data for all 3 axes was matching with the
VICON data.

TABLE I
BIAS VALUES FOR EACH DATASET

Dataset Linear acceleration Angular velocity
1 [510.80, 500.99, 605.15] [373.57, 375.37, 369.68]
2 [511, 500., 605.18] [373.63, 375.37, 369.65]
3 [509.90, 501.08, 607.58] [373.71, 375.85, 370.02]
4 [512.58, 503.025, 607.85] [374.24, 376.25, 371.24]
5 [513.02, 501.68, 605.82] [375.77 , 377.03, 373.58]
6 [510.27, 498.78, 605.57] [373.37, 375.70, 369.79]
7 [511.98, 500.32, 605.95] [374.50, 376.74, 369.60]
8 [511.75, 501.10, 607.93] [373.45, 376.27, 369.68]
9 [513.21 , 501.16, 607.44] [373.77 , 376.14, 369.27]
10 [511.73, 499.67, 606.21] [373.52, 376.08, 369.61]
11 [510.18, 500.38 , 605.88] [373.77, 375.22, 369.74]

B. Motion and Observation Model

1) Motion Model: The motion model generates the quater-
nion trajectory using the exponential value of angular ve-
locity and timestep, multiplied by the previous timestep
quaternion. We start with q = [1, 0, 0, 0] and then
calculate the complete trajectory.

2) Observation Model: using the quaternions generated
from the motion model, we calculate the acceleration
trajectory for the respective quaternion value.

C. Cost Function

The cost function in the optimization process incorporates
two error terms: the motion model error and the observa-
tion model error. The motion model error is determined by
comparing the previous quaternion trajectory and the updated
quaternion trajectory obtained through one iteration of gradient
descent optimization. The observation model error is computed

by calculating the difference between the IMU’s unbiased ac-
celeration readings and the observation model’s output which
is computed at each iteration of gradient descent. The equation
for the cost function is presented in (3). However, encountering
’Nan’ values for the motion model error term due to certain
norm values equaling zero prompted the removal of this term
from the optimization process. As a result, the optimization
model only optimizes the cost derived from the observation
model.

D. Gradient Descent Optimization

The gradient descent algorithm is executed for 20 iterations
with the objective of minimizing the cost function in each
iteration. The derivative of the cost value with respect to the
quaternion trajectory at each step is calculated, yielding the
”delta” used in the optimization equation. With a learning
rate of 0.001, the optimized quaternion trajectory is calculated
for each iteration. This updated trajectory is then supplied
to the motion model, observation model, and cost function
for further processing, resulting in a new cost value. This
new value is differentiated with respect to the quaternions
at that iteration and utilized in the gradient descent equation
to determine future quaternions. After 20 iterations, the cost
function reaches convergence or stability and does not show
significant further reduction. Therefore, the gradient descent
process is terminated after 20 iterations and the quaternion
trajectory generated after the 20th iteration is used. This
trajectory is then utilized to generate the rotation matrix, which
is discussed in the following section.

E. Image Orientation

We have now optimized the quaternion trajectory through
gradient descent optimization and can proceed with construct-
ing the panorama. The rotation matrices are calculated from
the optimized quaternion trajectory using the transforms3d
library. However, since the camera data was recorded at a
different frequency than the IMU data, we must identify and
select the quaternion values that are closest to the camera
image timestep in order to match the timestep of the camera
image. The camera images are represented in a spherical
coordinate frame, each with a resolution of 240 x 320 pixels,
covering an angular extent of 60 degrees horizontally and
45 degrees vertically on a sphere. Using this information,
we calculate the spherical coordinates for each pixel, starting
from the top left corner [0,0] and with each pixel separated
by a factor. The spherical coordinates are transformed into
Cartesian coordinates, and then into the world frame by
rotating them using optimized quaternion trajectory rotation
matrices. With the image coordinates now in the world frame,
we must convert them back to a spherical coordinate system.
This conversion is necessary because the RGB values in the
camera data are assigned based on spherical coordinates. Thus,
in order to bring the spherical coordinates into the world
frame, we must first convert them from Cartesian to spherical.



Fig. 1. Cost value per iteration for training and testing dataset

F. Panorama
After assigning all the RGB values to the spherical coor-

dinates in the world frame, we use a cylindrical projection
to project them onto a cylindrical surface. This is achieved
using the Mercator projection method. In this projection, we
are left with only the [x, y] coordinate values for each pixel.
We then map the corresponding RGB values from the camera
data onto the cylindrical surface for each pixel. Once all the
assignments are complete, we unfold the cylinder to obtain the
final panoramic image.

IV. RESULTS

This section presents the plots for:
1) The cost value per iteration for all datasets, Fig 1.
2) The panorama generated for the respective training

datasets, Fig 2.
3) The roll, pitch, and yaw values for the optimized trajec-

tory vs the ground truth data (VICON) data, Fig 3.

V. ACKNOWLEDGEMENT

I collaborated with Mihir Kulkarni (A59018127) for the
assignment where we helped in debugging each other’s code.



Fig. 2. Panorama generated for training and testing datasets





Fig. 3. Roll, Pitch, and Yaw values for all datasets


