
Project 2: Particle Filter SLAM
Prathamesh Saraf (A59015739)

Department of Electrical and Computer Engineering
University of California, San Diego

psaraf@ucsd.edu

Abstract—This project implements SLAM on a differential-
drive robot using encoder and IMU odometry, 2-D LiDAR scans,
and RGBD measurements to construct a 2-D occupancy grid
map of the environment. The mapping, prediction, update, and
texture map phases are involved. Dead-reckoning is used to verify
the prediction step, and the particle filter prediction step is
implemented. The texture map is created by projecting colored
points from the depth camera frame to the world frame and
finding the plane that corresponds to the occupancy grid.

Index Terms—Particle Filter - Simultaneous Localization and
Mapping (SLAM), Differential-Drive Robot, IMU, 2-D LiDAR,
RGBD Camera

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is a cru-
cial problem in robotics that allows robots to navigate and map
their environment simultaneously. The goal is for the robot to
determine its location and orientation while building a map of
the environment using various sensors. This project aims to
implement SLAM using the encoder and IMU odometry, 2-D
LiDAR scans, and RGBD measurements on a differential-drive
robot. The primary objective is to create a 2-D occupancy
grid map of the environment while localizing the robot.
Additionally, the RGBD images are used to assign colors to
the map’s floor surface.

The project is divided into four main phases: mapping,
prediction, update, and texture mapping. In the mapping phase,
the robot’s identity pose is assumed, and the first LiDAR
scan is used to create an occupancy grid map. The map is
created by processing the LiDAR scan, removing scan points
that are too close or too far from the robot, and transforming
the LiDAR points from the LiDAR frame to the world frame.
The occupied and free cells in the occupancy-grid map are
then obtained using Bresenham2D.

In the prediction phase, the robot’s motion is predicted
using linear velocity and yaw rate from encoders and IMU. To
verify the prediction step, dead-reckoning is implemented, and
the robot’s trajectory is plotted. A complete 2-D occupancy-
grid map is then created by combining dead-reckoning and
mapping before implementing the particle filter. The update
phase uses the scan grid correlation to correct the robot’s pose,
and the final step involves using RGBD images to produce a
2D color map of the floor surface.

II. PROBLEM FORMULATION

A. Particle Filter

The particle filter PDF is given below. It uses Bayes filtering
for estimating the dynamical system by using the inputs and

observations. Alpha is the confidence value of each particle:

pt|t (xt | z0:t, u0:t−1,m) =

N∑
k=1

αk
t|t ∗ δ

(
xt;µ

k
t|t

)
(1)

B. Prediction and Update

Given the predicted density p over x and the measurement
z, we use the observation model ph to incorporate the mea-
surement information and obtain the posterior p over x. The
prediction and update equations are given below:

pt+1|t(x) =

∫
pf (x | s, ut) ∗ pt|t(s)ds (2)

pt+1|t+1(x) =
ph (zt+1 | x) pt+1|t(x)∫
ph (zt+1 | s) pt+1|t(s)ds

(3)

C. Mapping

Mapping refers to the process of creating a map of the en-
vironment using sensor observations, which may be noisy and
uncertain, along with the robot’s trajectory. One commonly
used method for mapping is occupancy grid mapping, which
involves dividing the environment into a grid of cells and
assigning a binary value to each cell to indicate whether it
is occupied by an obstacle or not.

The occupancy grid mapping algorithm assumes that the
values assigned to each cell are independent of each other,
given the robot’s trajectory. In other words, the occupancy
state of each cell is only influenced by the robot’s position
at that point in time, and not by the occupancy state of other
cells or previous time steps.

While this assumption simplifies the mapping process, it
may not always hold true in practice, especially in environ-
ments with complex and interdependent structures. Nonethe-
less, occupancy grid mapping remains a popular and effective
approach for mapping in many applications.

p (m | z0:t, x0:t) =

n∏
i=1

p (mi | z0:t, x0:t) (4)

D. Lidar scan

The LiDAR scans data between -135 degrees to 135 degrees.
By iterating over this scan and using the lidar ranges data
provided, we create an occupancy grid map of every timestep.
However, the lidar can only detect distances up to 30 meters.
Consequently, any range values in L that exceed this limit are
deemed inaccurate and should be excluded from the analysis.

The x and y coordinates of the LiDAR scan are calculated as
given below:  x

y
z

 =

 r cos (θ)
r sin (θ)

0

 (5)

These coordinates are however in LiDAR frame. They can be
converted into the robot body frame by translating using the
robot measurements. Thus the LiDAR scan data is converted
into the body frame using: x

y
z

 =

 r cos (θ) + 0.13673
r sin (θ)

0

 (6)

These values are in the spherical frame which is converted
into a cartesian frame using the motion model.

E. IMU and Encoder Data

For the project, we utilized only the yaw rate data obtained
from the IMU sensor. However, as the data contained noise,
it required filtering. To accomplish this, we employed the
low pass filter method, using a frequency of 10Hz. The
corresponding filtering transfer function is provided below and
the equation is mentioned in the code:

T (s) =
K

1 +
(

s
ωO

) (7)

Secondly, it was necessary to synchronize the IMU data
frequency with the LiDAR scan frequency. To achieve this, we
isolated only those timestamps from the IMU data that closely
matched the LiDAR scan data. The filtered and truncated IMU
data is plotted and presented in figure (1) Next, we use the
encoder data to calculate the velocity of the robot. The formula
to do the same is given below:

vR = (FR+RR)/2× 0.0022m (8)

vL = (FL+RL)/2× 0.0022m (9)

The differential drive model is given in figure (2) The left
(vL) and right (vR) wheel velocity calculation use respective
encoder ticks and using the calibration factor 0.0022m (linear
translation of the wheel at each tick) we calculate the left
and right velocity of the robot. The final robot velocity is the
average of the left and right side velocities.

III. TECHNICAL APPROACH

A. Data Analysis

The measurement datasets used in the project include the
IMU, encoders, LiDAR, and Kinect cameras. The IMU pro-
vides data on the body’s angular velocity (yaw) in the IMU
reference frame, with a Unix timestamp recorded for each
measurement. The encoders, which count the rotations of
the four wheels, are sampled at 40 Hz. The LiDAR system
employs a Hokuyo UTM-30LX sensor, which has a 270-
degree field of view and can measure distances up to 30
meters. Each LiDAR scan consists of 1081 range values that

Fig. 1. Yaw rate for dataset 20. (1) Unfiltered, (2) Filtered, (3) Truncated

Fig. 2. Differential Drive model of the robot

provide measurements of obstacles in the environment. The
Kinect camera captures both RGB and disparity images.

Due to the different sampling rates of the measurement
datasets, synchronization was performed on all three datasets
- LiDAR, IMU, and encoders - and matched to the Encoder
timestamps. The Kinect camera was also synchronized accord-
ingly. The IMU data was then imported and processed using
a low pass filter with a cutoff frequency of 10Hz to eliminate
any noise present in the yaw measurements. Finally, the linear
velocity was calculated using a formula that was determined
beforehand.

Fig. 3. Robot specifications

B. Motion Model

The differential drive robot motion model uses the steering
angle (yaw angle), the yaw rate at each timestep, and the robot
velocity to calculate the position and orientation of the robot
at each timestep. The linear velocity (vt) data was collected
from the encoders, and the yaw rate (t) data was collected
from the IMU. The motion model equation is given below:

xt+1 =

 xt+1

yt+1

θt+1

 = fd (xt,ut) := xt + τt

 vt cos (θt)
vt sin (θt)

ωt


(10)

Since we are doing the SLAM operation over 100 particles,
we add noise to the motion model so that each particle is
slightly disturbed from the other. We add a gaussian noise
with a mean of 0 and a variance of 0.005. I initially tried with
variance = 0.05 but got a highly distorted map output. The
noise of 0.005 gives a fairly well-constructed graph.

Dead reckoning is a useful step in the particle filter SLAM
process, as it provides a rough estimate of the robot’s trajectory
and environment map. The first step in Dead Reckoning in-
volves using the motion model to derive the robot’s trajectory.
This trajectory is then used to perform LiDAR data processing,
which involves converting the LiDAR radial coordinates into

Cartesian coordinates and transforming them from the LiDAR
frame to the Robot frame, and then to the World frame. The
transformation matrix used to convert body coordinates to
world coordinates is given below:

Ti =

[
Ri Xi

0 1

]
(11)

Once the robot’s trajectory has been derived, the next step is
to build an occupancy map. This is achieved by creating a grid
with a specified size and resolution, which is matched to the
real world. In this case, a grid size of 50 x 50 with a resolution
of 0.01 m was chosen for better precision in the occupancy
grid map. The cells which have been filled or identified as an
obstacle from LiDAR ranges are then assigned values of 1,
and empty cells are assigned 0 to build an occupancy map.

Although not necessary for particle filter SLAM, Dead
Reckoning is a valuable step as it helps build intuition of the
data and many of the steps involved in Dead Reckoning can
be translated into the prediction step. By providing a rough
estimate of the robot’s trajectory and environment map, Dead
Reckoning can also help improve the accuracy of the final map
produced by particle filter SLAM.

C. Occupancy Grid

Mapping involves creating a map of the environment using
sensor observations while accounting for uncertainty. One
common approach is occupancy grid mapping, where the
environment is discretized into cells and each cell is assigned
a binary value indicating if it’s occupied or free. The map
is represented as a two-dimensional vector, with each entry
indicating the occupancy status of the corresponding cell.

To model the occupancy status of each cell, we assume that
the cell values are independent given the robot’s trajectory. We
use Bernoulli random variables with a uniform prior since we
have no prior information about the occupancy status of the
cells.

To update the occupancy grid map, we use lidar scans and
Bresenham2D algorithm to convert the scan into map cells.
The log-odds ratio is used to update the probability of each
cell, which is based on the likelihood of the lidar scan given
the occupancy status of the cells. The resulting probability in
each cell indicates its occupancy status, and a threshold value
can be set to determine whether a cell is considered occupied
or free. An occupancy map is created by utilizing the previous
map generated through the dead reckoning step. The maximum
and minimum values of the robot’s trajectory are analyzed to
establish a new occupancy grid. This grid has a size of 20 *
20 m and a resolution of 0.5 m, resulting in a final grid map
of 1200 * 1200.

To project LiDAR coordinates onto the grid, the coordinates
in the world frame are first transformed into map coordinates.
This allows for precise localization of the LiDAR data within
the occupancy map.

In this approach, the map cells mi is regarded as indepen-
dent Bernoulli random variables. When mi is occupied with
probability it, it is represented as 1, while when it is free with

probability 1-it, it is represented as -1. To update the Odds ratio
of this variable, the Bayes rule is applied, and the observation
model odds ratio is computed.

For the log-odds occupancy grid mapping, a trust ratio of
true to false positives is set at 4, and the mapping is calculated
based on whether zt indicates that mi is occupied or free. For
each observed cell I, the log odds decrease if the observation
was free and increased if the observation was occupied. To
avoid overconfident estimation, an upper and a lower bound
is placed on i.

After the log-odds of cells are estimated, the occupancy
probability (i,t) can be calculated from the log-odds value.
Given below are the series of equations used to compute the
log odds:

i = ceil ((xw − xmin) / resolution)

j = ceil ((yw − ymin) / resolution)
(12)

γi,t = p (mi = 1 | z0:t, x0:t) (13)

gh (zt | mi, xt) =
p (mi = 1 | zt, xt)

p (mi = −1 | zt, xt)
∗ p (mi = 1)

p (mi = −1)
(14)

λi,t = log

(
p (mi = 1 | zt, xt)

p (mi = −1 | zt, xt)

)
− λi,0 + λi,t−1 (15)

∆λi,t = log

(
p (mi = 1 | zt, xt)

p (mi = −1 | zt, xt)

)
± log(4) (16)

λi,t+1 = λi,t ± log(4) (17)

γi,t = 1− 1

1 + exp (λi,t)
(18)

D. Particle Filter

Particle Filter Localization is the process of estimating the
position and orientation of a robot in an environment. The first
step in the Particle Filter is initializing a set of particles. In this
case, the number of particles is set to 100, and all particles are
initialized to [0, 0, 0], which is the same as the initial location
of the robot. Each particle is assigned an initial weight of 1/N,
where N is the number of particles.

The next step involves updating the particles using LiDAR
data. The LiDAR sensor provides measurements of distances
to obstacles in the environment, and these measurements
are used to update the particles. The LiDAR scan at time
0 is converted to world coordinates and projected onto an
occupancy grid map, which is initially set to all zeros.

The prediction step is then performed, where the motion
model of the robot is used to predict the next location of
each particle. In this case, noise is added to the particles at
each iteration of the motion model, which helps disperse the
particles from each other and capture all possible states in the
close vicinity of a probable solution. The standard deviation
of the noise is set to 0.005 with a mean of 0.

Next, the Particle Update step is performed. The particle
weights are updated based on the output of the map correlation
function. This step involves extracting a correlation of the
LiDAR scans in the world by transforming the position of
each particle and then comparing it for overlap with the
grid constructed in the previous iteration. The weights of the
particles are stored as the correlation scores of the particles.

The weights of the particles are then normalized so that the
sum of all weights is equal to 1. The particle with the highest
weight is chosen, and its state becomes the estimated location
of the robot. This is called the Robot State Estimation.

In the next step, the occupancy grid map is updated based
on the LiDAR data. The log-odds technique is used to update
the map. In this code, a log4 value is added to the cell for
every obstacle detection observed and log2 is added for the ray
connecting the robot location (particle location) to the obstacle.
The grid locations where no obstacle tracing ray is encountered
are kept at a value of 0.

These steps are iterated for all timestamps, and if the
number of effective particles decreases below a threshold,
particle resampling is carried out. Particle resampling involves
selecting new particles based on the weights of the existing
particles, with particles with higher weights being more likely
to be selected.

Overall, the Particle Filter algorithm is a powerful method
for localizing a robot in an environment. By using a set
of particles to represent possible positions of the robot, the
Particle Filter is able to handle uncertainties in the robot’s
motion and measurement data, and provide accurate estimates
of the robot’s location and orientation. The SLAM pseudo-
code is given below:

Initialize:

• Occupancy log-odds
• Particles

for t in 0...T do

1) Transform lidar scan points zt to body frame
2) Particle filter: Update Step:

a) Transform lidar scan points to world frame with
respect to the state (pose) of each particle to get
y
(k)
t

b) Calculate map correlation corr(k)(y
(k)
t ,mt)

c) Update particles µt|t to their local maximum map
correlation

d) Update particle weights α
(k)
t |t

3) if Neff ≤ Nthreshold then
a) Particle Filter: Resampling

4) Occupancy Map: Update log-odds
a) Choose particle with maximum weight αt|t
b) Transform lidar scan points to its world frame yt
c) Update log-odds

5) Particle filter: Prediction Step

end

E. Resampling

In order to prevent weight collapse due to weight dispar-
ity, resampling is employed. This process involves replacing
particles with negligible weights with new particles in close
proximity to those with higher weights. Resampling results
in the creation of a new particle set with equal weights by
adding more particles to high-weight locations and fewer
particles to low-weight locations. This technique concentrates
the representation power of the particles in regions with a
high likelihood while leaving regions with low likelihood with
fewer particles. Resampling is performed at time t when the
effective number of particles falls below a certain threshold,
represented by the following inequality:

Neff =
1∑N

k=1

(
α
(k)
t|t

)2 ≤ Nthreshold (19)

F. Texture Mapping

To begin the texture mapping process, it is necessary to cal-
ibrate and undistort the color and depth images obtained from
the Kinect. This is important because the RGBD data provided
by the Kinect is not accurately calibrated. The intrinsic matrix
and distortion coefficients for both the color and depth images
are provided in the dataset. Our implementation involves using
the cv2.undistort function and the corresponding distortion
coefficients to undistort the images.

Next, we align the color and depth images and generate
a point cloud in the Kinect frame. This process requires the
intrinsic matrix and extrinsic matrix provided in the dataset.
The resulting output is a matrix P R N6, where each row
contains the x, y, and z coordinates of a pixel in the aligned
image, along with its corresponding RGB color information.

Once the point cloud in the Kinect frame is retrieved, we
transform the coordinates of the points to the world frame and
map them onto the occupancy grid map.

IV. RESULTS

This section presents the plots for:
1) The Occupancy grid for dataset 20 and 21
2) The texture map for datasets 20 and 21

The results of dead reckoning involve the trajectory of the
robot obtained from a motion model. To predict the robot’s
location, the motion model was used and LiDAR coordinates
were transformed into a grid frame using a series of transfor-
mations. The results are presented in the form of plots.

During experimentation, it was observed that when the
Bresenhem2D model was run without log odd updates, the
resulting plot was very noisy, as it included all the rays
observed by the LiDAR. However, this noise can be filtered
out by applying log-odd updates, which would eliminate low-
probability areas of obstacles.

The particle filter was then applied using a particle size
of 100 and random Gaussian noise with mean 0 and variance
0.005 was added to the motion model updates for each particle.
The particle filter was run on both datasets, and the results
were displayed in plots.

However, due to the code’s lack of vectorization, the
program takes a high computation time and uses a lot of
memory. This time constraint has limited the number of times
the particle filter can be run to test multiple occupancy grid
construction approaches. I have not used log odds in building
the occupancy grid which has led to a distorted map of the
environment. I have only used binary mapping. The use of
log odds was taking high computation time and exceeding the
RAM of Google Colab. I tried vectorizing the code but was
not able to improve the efficiency after one point. Although,
I have included the logodds implementation in my final code.
Hence, I have done only 0-1 mapping.

V. ACKNOWLEDGEMENT

I collaborated with Mihir Kulkarni (A59018127) and Yesh-
want Matey (A59015107) for the assignment where we helped
in debugging each other’s code.

VI. REFERENCES

[1] https://natanaso.github.io/

Fig. 4. Final Occupancy grid for dataset 20 after every 500 timesteps (img 1-9), texture map for dataset 20 (img 10), the trajectory (90 degrees clockwise
rotated) for dataset 20 (img 11)

Fig. 5. Final Occupancy grid for dataset 21 after every 500 timesteps (img 1-9), texture map for dataset 21 (img 10), the trajectory (90 degrees clockwise
rotated) for dataset 21 (img 11)

