
Project 3: Visual-Inertial SLAM
Prathamesh Saraf (A59015739)

Department of Electrical and Computer Engineering
University of California, San Diego

psaraf@ucsd.edu

Abstract—The project focuses on the implementation of a
visual-inertial simultaneous localization and mapping (SLAM)
algorithm using an Extended Kalman filter (EKF). The al-
gorithm utilizes synchronized measurements from an inertial
measurement unit (IMU) and a stereo camera, with provided
intrinsic and extrinsic calibration parameters. The algorithm
consists of three parts - an EKF prediction step based on SE(3)
kinematics equations and IMU measurements to estimate the pose
of the IMU over time, an EKF update step using visual feature
observations to estimate the positions of observed landmarks, and
combining the IMU prediction step with the landmark update
step to implement an update step for the IMU pose based on
the stereo-camera observation model, thus obtaining a complete
visual-inertial SLAM algorithm.

Index Terms—Visual-inertial SLAM, Extended Kalman Filter,
Stereo Camera, Pose Estimation

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is an
essential problem in robotics that has been extensively studied
in recent years. In this project, we implement a complete
SLAM algorithm by combining an Extended Kalman Filter
(EKF) prediction step based on SE(3) kinematics with IMU
measurements, and an EKF update step based on stereo-
camera observation model with visual feature observations.
The algorithm allows us to estimate the pose of a robot and
the locations of the landmarks observed by it in an unknown
environment.

First, we perform IMU localization via EKF prediction. We
implement an EKF prediction step based on SE(3) kinematics
equations and the linear and angular velocity measurements
from the IMU to estimate the pose of the IMU over time. By
using the EKF algorithm, we can keep track of the mean and
covariance of the pose estimate, which allows us to update it
based on new measurements over time. Next, we estimate the
landmark positions observed by the robot using visual feature
measurements. Assuming that the predicted IMU trajectory
from the first step is correct, we will focus on estimating the
landmark positions observed in the images. We will implement
an EKF with the unknown landmark positions as a state and
perform EKF update steps using the visual observations to
keep track of the mean and covariance of the landmarks.
Assuming that the static landmarks are static, we estimate
the x and y coordinate using the EKF algorithm. Finally, we
combine the IMU prediction step with the landmark update
step to obtain a complete visual-inertial SLAM algorithm. We
will implement an update step for the IMU pose based on the
stereo-camera observation model to obtain accurate estimates

of the pose and the landmark positions. This enables us to
perform SLAM in an unknown environment accurately.

The following sections describe the mathematical problem
formulation and the technical approach to implementing the
algorithm along with the results obtained based on the given
dataset.

II. PROBLEM FORMULATION

A. Extended Kalman Filter - Prediction Step

The Extended Kalman Filter (EKF) is a variant of the
Kalman Filter that can handle nonlinear systems and is used
to estimate the states of a system based on a series of mea-
surements. The EKF linearizes the system around an operating
point, propagates the state and covariance estimates using the
linearized dynamics, and updates them based on nonlinear
measurements.

xt+1 = f (xt,ut,wt) ∼ pf (· | xt,ut) (1)

With mean and covariance:

µt+1|t = µt|t exp (τtût)

Σt+1|t = E
[
δµt+1|tδµ

⊤
t+1|t

]
= exp (−τ ût) Σt|t exp (−τ ût)

⊤
+W

(2)

Fig. 1. The car configuration model

B. Extended Kalman Filter - Update Step

The second objective is to estimate landmark positions
using an EKF with previously predicted IMU trajectory as
input. Landmark positions are the state variable represented
by a 3xM vector, and the EKF update step is performed



after every visual observation to maintain the mean and
covariance of landmark positions. As landmarks are assumed
to be stationary. This method is frequently used in robotics
to determine a mobile robot’s position and orientation using
fixed landmark locations. EKF provides a precise and resilient
solution for landmark estimation. Thus we need to estimate
the homogeneous coordinates (m) in the world frame based
on visual observations. The observation model:

zt = h (xt,vt) ∼ ph (· | xt) (3)

The EKF update equations used for this step are:

Ht+1,i,j =

{
Ks

dπ
dq

(
oTlT

−1
t+1µt,j

)
oTlT

−1
t+1P

⊤, if ∆t(j) = i,

0, otherwise
(4)

Kt+1 = ΣtH
⊤
t+1

(
Ht+1ΣtH

⊤
t+1 + I ⊗ V

)−1
(5)

µt+1 = µt +Kt+1 (zt+1 − z̃t+1) (6)

Σt+1 = (I −Kt+1Ht+1) Σt (7)

H is the Jacobian matrix which requires to be updated for
each step. The jacobian matrix changes its shape dynamically
throughout the update step since it depends on the number of
visible and visited features. Except this, the other parameters
have constant shapes and are only updated at every step.

Also, as seen landmarks align closely with the car’s path,
implying that the mapping was successful. To speed up com-
putation, the features were downsampled. Specifically, every
10th feature was used for each of the datasets. ekf prediction
update off map

z0 =
fsub

uL − uR

x0 =
z0 (uL − cu)

fsu

y0 =
z0 (vL − cV )

fsV

(8)

C. Visual Inertial SLAM

The third task involves merging the IMU prediction step
from part (A), the landmark update step from part (B), and
an IMU update step based on the stereo camera observation
model to obtain a comprehensive visual-inertial SLAM algo-
rithm. The new feature in this step is updating the IMU pose
based on the stereo camera observation model, similar to part
(B). However, the first-order Taylor series approximation is
expanded at an inverse IMU pose, using a pose perturbation
t+1—t+1, instead of the landmark perturbation t,j used in part
(B). The objective is to update the IMU pose Ut, given visual
feature observations z0:T and inverse IMU pose Ut, using the
observation model and sensor value. This step assumes the
same set of assumptions as in the previous tasks.

III. TECHNICAL APPROACH

This section provides the technical approach and mathe-
matical equations used to solve the problem formulations and
highlights the specific techniques employed in the code to
achieve the desired result. The EKF approach presents a robust
and efficient solution to the visual-inertial SLAM problem
by estimating the robot’s pose and landmark locations. The
Technical Approach section serves as a valuable resource for
researchers and practitioners looking to implement EKF for
visual-inertial SLAM.

A. Prediction

Once all time steps have been iterated, the estimated means
are used to extract the full trajectory of the IMU pose. The
equation reveals that when the update step is not implemented,
the means for all time steps are not influenced by the co-
variances. This can be viewed as a simplification of the pose
estimation process, however, it cannot be considered as an
implementation of the EKF since the Kalman gain is not
computed. It’s important to note that the Kalman gain is a
crucial factor in the EKF, as it adjusts the balance between
the predicted state and the observed measurements, resulting
in more accurate state estimates. Therefore, the omission of
the Kalman gain would compromise the effectiveness and
accuracy of the EKF approach for pose estimation. The
prediction equations used:

Tk := T (tk) , τk := tk+1 − tk (9)

[
v̂
ω

]
:=

[
ω̂ v
0 0

]
(10)

Tk+1 = Tk exp
(
τk ζ̂k

)
(11)

where,

µt+1|t = µt|t exp (τtût)

Σt+1|t = exp (−τ ût) Σt|t exp (−τ ût)
⊤
+W

(12)

ut =

[
vt
ωt

]
ût =

[
ω̂t vt
0 0

]
∈ R4×4

ût =

[
ω̂t vt
0 ω̂t

]
R6×6

(13)

B. Update

To implement landmark mapping, predicted observations are
computed using the robot pose and intrinsic camera matrix.
The map is updated by finding visible features, classifying
them as first-time or revisited, and using the inverse camera
model to obtain world coordinates for first-time features.
For revisited features, the zTilda and Jacobian matrix are
found to update the mean and covariance matrix. To speed
up debugging and computation, features were down-sampled,



with every 10th feature used to update the map and a separate
array created for these features.

We first extract all the visible features from the camera data.
The invisible features are the ones for which the observation
values are [-1, -1, -1, -1]. After extracting all the visible
features from the dataset at each timestep, we run the update
step and compute/update the mean and covariance matrices.
These are then used by the observation model to compute the
new observations. Using the new observations, we update the
Kalman gain matrix, then use it to compute new step mean
and covariance matrices. The equations for the update step are
given below:

z̃t+1,i = Ksπ
(
O,T

−1
t+1µt,j

)
∈ R4 for i = 1, . . . , Nt+1

(14)


uL

vL
uR

vR

 =


fsu 0 cu 0
0 fsv cv 0
fsu 0 cu −fsub
0 fsv cv 0


︸ ︷︷ ︸

M

1

z


x
y
z
1

 (15)

C. Pesudo Code for the EKF SLAM

This pseudocode outlines the process of importing data,
resampling features, and initializing the IMU pose mean and
covariance matrix, the covariance matrix, and the revisited
feature tracker. Then, for each timestamp, the algorithm finds
visible features and applies the motion model to predict
the pose mean and covariance. For each visible feature, the
algorithm checks whether it is visible for the first time or
not. If it is visible for the first time, the feature is projected
from IMU coordinates to the world frame, and the revisited
feature tracker is updated. Otherwise, the algorithm removes
disparity features, applies the EKF mapping equations, calcu-
lates the predicted observations zTilda, calculates the Jacobian
for features and body, calculates the Kalman gain, updates
the body pose mean, updates the feature mean, calculates the
covariance, and replaces the previous covariance with new
values.

Algorithm 1: EKF SLAM Algorithm
Input: Data Import
Output: Updated Pose Mean and Covariance Matrix
Feature Resampling - Lowering the number of

features; Initialization of IMU pose mean and
covariance matrix; Initialization of covariance matrix;
Initialization of Revisited Feature Tracker; for t in
timestamps do

Finding visible features at a given timestamp;
Prediction step - Applying the Motion Model to
predict the Pose mean and covariance.; for visible
j in visible feature do

if visible for the first time then
Project feature from IMU coordinates to
World frame; Update revisited feature
tracker;

else
Remove disparity features; Apply EKF
Mapping equations; Calculate predicted
Observations zT ilda; Calculate Jacobian
for features and body; Calculate Kalman
Gain; Update Body Pose Mean; Update
Feature Mean; Calculate Covariance;
Replace the previous covariance with new
values;

D. Visual SLAM

This section employs a prediction step that closely follows
the EKF prediction step for the robot’s motion model. The
primary deviation, however, lies in the requirement to update
the covariance between the robot and landmarks, as well as
within themselves. As a result, the covariance has a shape
of R3M+63M+6. The equations given below exaplin the
vectorised implementation for fast computing. This way all the
updates are computed in one go instead of indiviual update
which increases the efficiency and reduces the computation
time.

Σt =

[
ΣLL ΣLR

ΣRL ΣRR

]
ΣLL ∈ R3M+6×3M+6

ΣRR ∈ R6×6

(16)

µt+1|t = µt|t exp (τtût)

ΣRRt+1
= exp (−τ ût) ΣRRt

exp (−τ ût)
⊤
+W

(17)

Hland = Ks
dπ

dq

(
oTIµ

−
R1µL

)
o
TIµ

−
R1P

T

Hland = Ks
dπ

dq

(
oTIµ

−
R1µL

)
o
TI (µRµL)

(18)

Kt+1 = Σt+1|tH
T
t+1

(
Ht+1Σt+1|tH

T
t+1 + I ⊗ V

)−
1 (19)



µt+1|t+1 = µt+1|t exp ((Kt+1 (zt+1 − zt+1))) (20)

Σt+1|t+1 = (I −Kt+1Ht+1) Σt+1|t (21)

IV. RESULTS

This section presents the plots for:
1) Prediction and localization step trajectory for datasets

03 and 10
2) Map (EKF update) plot for datasets 03 and 10
3) Visual SLAM output for datasets 03 and 10

A. IMU Localization - EKF Prediction

The dead reckoning plots are shown below for dataset 03
and dataset 10. The twist model as mentioned in the technical
approach was implemented and the plots were obtained. There
were no errors or special techniques encountered in this
method and the implementation was straightforward based on
the pr3utils file.

Fig. 2. Dead reckoning for the trajectory of dataset 03 and dataset 10

B. Mapping - EKF Update

The process of landmark mapping involves projecting and
updating landmark features onto the world frame using dead
reckoning. To achieve accurate results, the noise factor V in
the Kalman gain equation was tuned for each dataset, with a
value of 1 for dataset 03 and 0.5 for dataset 10. Additionally, it

was crucial to ensure that all equations had carefully matched
matrix dimensions to ensure the successful execution of the
code.

To handle any errors that may arise during the compu-
tation of the Kalman gain, an error-handling approach was
introduced. The code was programmed to ignore cases where
a singular matrix error was encountered during the Kalman
gain or Ztilda calculation and proceed to the next iteration. It
is worth noting that singular matrix errors can arise when a
matrix is not invertible, which can occur during Kalman gain
or Ztilda calculation when the inverse of a matrix is being
computed.

Although fixing noise factors is the preferred method for
tackling singular matrix errors, it can be time-consuming to it-
erate over multiple noise factors. As a result, the error-handling
approach was found to be an effective solution. Despite the
preference for fixing noise factors, the error-handling approach
was used due to its ability to handle errors more efficiently.
Overall, the combination of tuning noise factors, matching
matrix dimensions, and error handling was crucial in obtaining
accurate results during the landmark mapping process.

Fig. 3. Update step of dataset 03 and dataset 10

C. Visual SLAM

The visual SLAM is implemented as discussed in the pseu-
docode with appropriate noise settings. the plots are shown
below for dataset 03 and dataset 10. Incorrect estimation of
noise and covariance matrices is the root cause of the problem



with the Kalman filter. The filter’s performance heavily relies
on the chosen noise values, and even slight variations in these
matrices can lead to significant errors in the results. Changes
to the W or V matrices, for example, can cause the robot’s
position estimate to explode or deviate from the intended path,
respectively. The W and V matrices used for EKF are given
below:

W =


0.01 0 0 0 0 0
0 0.01 0 0 0 0
0 0 0.01 0 0 0
0 0 0 0.001 0 0
0 0 0 0 0.001 0
0 0 0 0 0 0.001


V = 5 * np.eye (Nt)(22)

Fig. 4. Visual SLAM dataset 03 and dataset 10

V. ACKNOWLEDGEMENT

I collaborated with Mihir Kulkarni (A59018127) and Yesh-
want Matey (A59015107) for the assignment where we helped
in debugging each other’s code.

VI. REFERENCES

[1] https://natanaso.github.io/


