PRATHAMESH SARAF

pratha1999@gmail.com |+1-(619)-953-8290 | Website | Google Scholar | Github | LinkedIn | San Diego, CA

SKILLS

Programming/Modeling: C++ (11/14/17), Python, Embedded C, MATLAB/Simulink, Verilog/VHDL
Frameworks/Simulation: ROS/ROS2, Gazebo, MuJoCo, PyBullet, Drake, Isaac Sim/Omniverse, CARLA/LGSVL
Embedded Systems: CAN bus, EtherCAT/TwinCAT (Beckhoff), SPI/I²C/UART, FPGA, Simulink HDL Coder
Robotics/Controls: PID, LQR, MPC, Whole-Body Control, Impedance Control, State Estimation (EKF/UKF, Particle Filters)
Testing/Validation: HIL/SIL, unit testing, regression testing, test benches, logging & data analysis, on-site debugging
Tools/Platforms: Git/GitHub, Docker, Linux (Ubuntu), Jira, CAD (SolidWorks, Fusion 360), Electrical CAD/Schematic Design
Soft Skills: Cross-functional collaboration, escalation, customer support, ownership, stakeholder management

EXPERIENCE

Controls Engineer (System Integration), ASML

Iun 2024 - Present

- Led the closed-loop PI controller design for the energy subsystem by analyzing frequency/time-domain metrics (Bode, Nyquist, step/sine response) and system identification to improve performance, robustness, and bandwidth.
- Benchmarked and validated the controller gains using a multi-parameter cost function, simulation to match desired spec; deployed across multiple production systems; accepted as the new baseline configuration with **99.8%** efficiency.
- Implemented feedforward control, improving transient response, noise suppression, reference tracking, and overall reliability of the 5200B EUV lithography systems for known failure points and edge cases.
- Built and deployed an EtherCAT-based 'Sensor Acquisition' HIL simulator (Simulink-HDL), regression-tested on FPGA-based testbenches; extended a Python simulator for accelerated verification workflows.
- Led end-to-end delivery of open-loop control, updated requirements, and the Simulink model, designed test cases, performed unit/bench testing, and coordinated with cross-functional teams to deliver 3 weeks ahead of schedule.
- Provided rapid escalation and integration support by debugging issues in less than 1 day, delivering FW/control patches, and training proto engineers during feature bring-up.

Dynamic Locomotion and Controls Researcher, N Robotics | IISc | NUS 🔗

Jan 2021 - Sep 2023

- Led the development of locomotion/gait planning using whole-body MPC controllers, ZMP planners, CPG-based approaches, inverted pendulum models, and motion imitation learning for humanoid, quadruped, and hexapod robots.
- Implemented EKF/UKF-based estimators, sensor fusion pipelines combining IMU, foot contact sensors, joint encoders, and LiDAR/vision to obtain terrain estimates and maintain accurate body pose during dynamic maneuvers.
- Designed and validated QP-based hierarchical task-space controllers through SIL/HIL testing, tuned torque parameters on hardware using joint feedback, and benchmarked performance on stability, slip, fall recovery, and energy efficiency.
- Collaborated cross-functionally to debug hardware issues like sensor drift, actuator nonlinearities, motor overheating, signal noise, latency, and foot contact misdetection in real time, ensuring stable execution under variable conditions.

Electronics Subsystem Lead, Hyperloop India 🔗

Aug 2019 - Oct 2020

- Architected a CAN-based distributed vehicle control system with multi-sensor fusion (IMUs, encoders, tachometers, fiducials) for real-time state estimation and built-in fault diagnostics, achieving >90% error reduction.
- Implemented localized torque control loops and fail-safe Emergency Braking Protocols on motor controllers, improving safety and operational reliability to **98%** across propulsion, braking, and sensing modules as per ISO26262 principles.
- Designed and validated hardware-level safety protection through SIL/HIL testing for high-voltage systems, including battery management, arcing prevention, and robust power distribution to propulsion units for operational readiness.

RELEVANT PROJECTS

Traffic Wave Dampening using Autonomous Vehicles | *Python* §

Apr 2023 - Jun 2023

- Modeled complex traffic flow dynamics using a state-space representation to validate Lagrangian control strategies for autonomous vehicles to dampen traffic waves and ensure system stability significantly.
- Implemented a Follower Stopper controller, reducing velocity standard deviation by **80.8%**, fuel consumption by **42.5%**, and excessive braking by **98.6%**, while concurrently increasing traffic throughput by **14.1%**.

Multi-Modal Sensor Fusion for Robotic Localization and Mapping | Python &

Jan 2023 - Mar 2023

- Implemented comprehensive Simultaneous Localization and Mapping solutions for autonomous robots, fusing IMUs, encoders, 2D LiDAR (up to 30m range), and stereo/RGBD camera data to construct 2D occupancy grids to track landmarks.
- Optimized a Particle Filter for differential-drive robot localization and an Extended Kalman Filter (EKF) for visual-inertial SLAM, ensuring robust and accurate pose tracking.
- Validated high-fidelity sensor processing pipelines, encompassing IMU calibration, 10Hz yaw rate filtering, and gradient descent optimization for quaternion-based orientation tracking for precise vehicle control and panoramic mapping.

A Convolutional Neural Network Approach Towards Self-Driving Cars | C++, Python

Sep 2018 - Mar 2019

- Designed end-to-end control architecture with Raspberry Pi handling CNN-based perception/inference and Arduino Mega executing low-level motor actuation via PWM and CAN bus, achieving sub-millisecond inference latency.
- Implemented CNN-driven control mapping raw camera input to steering commands (Embodied AI), with ultrasonic sensor tracking and a safety layer to trigger obstacle avoidance, lane changes, and braking under real-time constraints.
- Integrated motion planning with RRT*-Connect + Reed-Shepp curves, validated in the CARLA simulator and on a hardware prototype, achieving an **86%** autonomy rate with robust real-time performance.

OTHER FIRST AUTHOR PUBLICATIONS / PROJECT REPORTS

- 1. "Convex Optimization in Legged Robots," Project Report
- 2. "Implementation and Testing of Force Control on a Spherical Articulated Manipulator," IEEE ICMA 2022
- 3. "Terrain Adaptive Gait Transitioning for a Quadruped Robot using Model Predictive Control," IEEE ICAC 2021 &
- 4. "Modeling and Simulation of a Point-to-Point Spherical Articulated Manipulator Using Optimal Control," IEEE ICARA 2021
- 5. "A Comparative Study Between a Classical and Optimal Controller for a Quadrotor," IEEE INDICON 2020

EDUCATION

University of California, San Diego

San Diego, USA

MS in Electrical & Computer Engineering (Intelligent Systems, Robotics, & Controls)

2022 - 2024

Courses: Robot Motion Planning, Sensing and Estimation, Co-operative Control of Multi-Agent Systems, Statistical Learning, Convex Optimization, Linear Algebra, Non-Linear Controls, Stochastic Processes in Dynamic Systems, AI for Robotics

Birla Institute of Technology & Science, Pilani

Hyderabad, India